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Abstract
We set up a general formalism for models of spontaneous wavefunction collapse
with dynamics represented by a stochastic differential equation driven by
general Gaussian noises, not necessarily white in time. In particular, we
show that the non-Schrödinger terms of the equation induce the collapse of the
wavefunction to one of the common eigenstates of the collapsing operators,
and that the collapse occurs with the correct quantum probabilities. We also
develop a perturbation expansion of the solution of the equation with respect
to the parameter which sets the strength of the collapse process; such an
approximation allows one to compute the leading-order terms for the deviations
of the predictions of collapse models with respect to those of standard quantum
mechanics. This analysis shows that to leading order, the ‘imaginary noise’
trick can be used for non-white Gaussian noise.

PACS numbers: 03.65.Ca, 03.65.Yz

1. Introduction

Models of spontaneous wavefunction collapse [1] provide a simple consistent resolution to
the measurement problem of quantum mechanics [2], and at the same time provide precise
indications for experiments which are more likely to detect possible violations of quantum
linearity [3]: these include e.g. fullerene diffraction experiments, decay of supercurrents,
excitation of bound atomic and nuclear systems and several cosmological observations. The
dynamics is represented by a stochastic Schrödinger equation of the form

d|ψt 〉 =
[
− i

h̄
H dt +

√
γ

N∑
i=1

(Ai − 〈Ai〉t ) dWi,t − γ

2

N∑
i=1

(Ai − 〈Ai〉t )2 dt

]
|ψt 〉, (1)

where H is the standard quantum Hamiltonian of the system, Ai are a set of commuting self-
adjoint operators to whose eigenstates the wavefunction is driven during the collapse process,
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Wi,t are N independent standard Wiener processes defined on a probability space (�,F, P),
the average 〈Ai〉t ≡ 〈ψt |Ai |ψt 〉 is the standard quantum expectation of Ai , and γ is a positive
constant which sets the strength of the collapse process.

The several collapse models which have been so far proposed differ from each other
basically only by the choice of the localizing operators: in GRW-type models [4], the set {Ai}
corresponds to the set of position operators of the constituents of the given physical system,
or some function of them; dissipative effects can be included by taking Ai to be a function of
both the position and the momentum operator of a particle [5], the resulting operator being
non-Hermitian; in the CSL model for identical particles [6], the index i is replaced by the
space coordinate x and A(x) becomes a function of the density number operator a†(x)a(x);
in energy driven models [7] there appears only one operator A, which is identified with the
Hamiltonian H. Finally, reduction models related to gravitational effects [8] can also be cast
in the form (1), as shown in [9].

The reduction properties of equation (1) can easily be verified by computing the time
evolution of the variance VA(t) ≡ 〈A2〉t −〈A〉2

t , of an operator A which commutes with all the
operators Ai ; as shown e.g. in [7], by using standard Itô calculus rules, and by setting H = 0,
one gets for the average value EP[VA(t)] the following equation:

EP[VA(t)] = VA(0) − 4γ

N∑
i=1

∫ t

0
ds EP

[
C2

A,Ai
(s)

]
, (2)

with CA,Ai
(t) ≡ 〈(A − 〈A〉t )(Ai − 〈Ai〉t )〉t . Since the integrand on the right-hand side is a

non-negative quantity, the above relation, when applied to any operator Ai , implies that, for
large times, the variance VAi

(t) converges to 0 for any realization of the noise, with the possible
exception only of a subset of � of measure 0; this means that any initial state |ψ0〉 converges
asymptotically, with probability 1, to one of the common eigenstates of the operators Ai .
When H �= 0 and moreover it does not commute with the other operators Ai , equation (1)
induces only an approximate collapse, the degree of approximation depending on the relative
strength of the Schrödinger term and of the collapse terms which define the equation.

A very useful mathematical property of equation (1) is that its physical predictions
concerning the outcomes of measurements are, in terms of statistical expectations, invariant
under a phase change in the noise. As a matter of fact, let us consider the following class of
stochastic Schrödinger equations:

d|ψt 〉 =
[
− i

h̄
H dt +

√
γ

N∑
i=1

(ξAi − ξR〈Ai〉t ) dWi,t

− γ

2

N∑
i=1

(|ξ |2A2
i − 2ξξRAi〈Ai〉t + ξ 2

R〈Ai〉2
t

)
dt

]
|ψt 〉, (3)

where ξ = ξR +iξI is a constant complex factor; of course, when ξ = 1 we recover our original
collapse equation. An easy application of Itô calculus leads to the following equation for the
density matrix ρ(t) = EP[|ψt 〉〈ψt |]:

d

dt
ρ(t) = − i

h̄
[H, ρ(t)] +

γ

2
|ξ |2

N∑
i=1

(
2Aiρ(t)Ai − {

A2
i , ρ(t)

})
, (4)

which is of the Lindblad type and has the remarkable property that it depends only on the square
modulus of ξ . Since, within collapse models, the statistics of the outcome of experiments
[10] can be expressed by the averages EP[〈ψt |O|ψt 〉] ≡ Tr[ρ(t)O], where O is a self-adjoint
operator, we see that in order to compute experimental predictions, one can use in place of
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equation (1) any stochastic equation of the type (3) which satisfies the constraint |ξ | = 1; in
most cases, it is convenient to choose the equation corresponding to ξ = i, since it is linear,
thus much easier to solve [11]. Of course, this does not mean that all equations of the form (3),
having the same value of |ξ |, are equivalent; in contrast, in general they generate completely
different evolutions for the wavefunction. For example, when ξ = 1, as we have seen, the
corresponding equation induces collapse of the wavefunction, since the property (2) for the
variance holds true; while on the other hand with ξ = i, the corresponding equation is linear;
thus, the wavefunction does not collapse in this case. This notwithstanding, all quantities of
the form EP[〈ψt |O|ψt 〉] turn out to be the same for the two equations, and for similar ones
with complex ξ of modulus unity.

The aim of this paper is to generalize equation (1) in order to include also non-white,
Gaussian, stochastic processes. Some results have already appeared in the literature [12–15],
but a general analysis is still lacking, mainly because the new dynamics is not Markovian and
thus is more difficult to describe mathematically. There are two main reasons why one should
consider collapse models driven by non-white noises. First of all, it is important to understand
how the collapse mechanism and other physical properties, such as the time evolution of the
mean energy, depend on the type of noise driving the collapse of the wavefunction. Since
these properties are directly connected to physical predictions which differ from those given
by standard quantum mechanics, such differences, and thus the possibility of experimentally
testing collapse models, could significantly change depending on the type of noise entering
the collapse equation. The second reason for such an analysis is that a non-white noise, unlike
a Wiener process, can be identified with a physical field; accordingly, one can try to connect
the collapse mechanism to some other physical process occurring in Nature, possibly having
a cosmological origin; we will come back to this point in the final section.

This paper contains two main sections, which set up the general formalism for non-
Markovian collapse models by following two different paths: in section 2, we follow the same
argument used in [6] to derive, from a generic diffusion process in Hilbert space, equation (1)
as the correct collapse equation; in section 3 instead we follow the strategy used in [16] to
obtain the same equation from general requirements on the dynamics of the density matrix.
We will prove the two following main results.

(1) We will show that, if one neglects the quantum Hamiltonian H, the dynamics leads to the
collapse of the wavefunction to one of the common eigenstates of the localizing operators,
with the correct quantum probabilities.

(2) We will develop a perturbation expansion of the solution of the equation with respect
to the coupling constant

√
γ ; when applied to experimental predictions on microscopic

systems, it provides the leading-order term for the deviation of such predictions from
those given by standard quantum mechanics.

Concerning this second result, we will also show that, at least to order γ , the equation for the
statistical operator depends only on the absolute value of ξ , precisely as discussed before for
the white-noise case; this means that, to this order, one can employ the useful trick of replacing
the real-noise (ξ = 1), nonlinear collapsing equation with an imaginary-noise (ξ = i), linear
non-collapsing equation, thus considerably simplifying calculations.

Throughout the calculations, one has to make sure that, at any stage, one recovers the
correct white-noise limit; however, one has to keep in mind that the white-noise limit of the
non-white collapsing equation will not be given by (1) or (3), since these are Itô equations;
instead, as explained e.g. in [17], an equation containing non-white noises reduces, in the
white-noise limit, to a Stratonovich equation. Accordingly, we write the Stratonovich equation
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corresponding to the Itô equation (3), which is [6]

d|ψt 〉
dt

=
[
− i

h̄
H +

√
γ

N∑
i=1

(ξAi − ξR〈Ai〉t )wi(t)

− γ ξR

N∑
i=1

(
ξA2

i − 2ξAi〈Ai〉t − ξR
〈
A2

i

〉
t

+ 2ξR〈Ai〉2
t

)] |ψt 〉

=
[
− i

h̄
H +

√
γ

N∑
i=1

(ξAi − ξR〈Ai〉t )(wi(t) + 2
√

γ ξR〈Ai〉t )

− γ ξR

N∑
i=1

(
ξA2

i − ξR
〈
A2

i

〉
t

)] |ψt 〉. (5)

In the second expression, we have written the third term in square brackets in a form that
corresponds to the white-noise limit of equation (18), with the remainder of the order γ

part playing the role of a shift in the mean value of the noise, corresponding to a change
of measure, as discussed in section 4. Of course, whether one uses equation (3) or (5), the
corresponding equation for the statistical operator ρ(t), which determines the evolution of
statistical ensembles of states, will always be given by (4).

2. Linear and nonlinear collapse equations

Following the path outlined in [6] to construct the continuous generalization of the GRW
model in terms of an Itô stochastic differential equation of type (1), let us consider a diffusion
process for the wavefunction in Hilbert space having the form

d|φ(t)〉
dt

=
[
− i

h̄
H +

√
γ ξ

N∑
i=1

Aiwi(t) + O

]
|φ(t)〉, (6)

where, as before, H is the standard quantum Hamiltonian of the system, Ai are commuting self-
adjoint operators, γ is a positive coupling constant, ξ = ξR + iξI is a constant complex factor,
while O is a linear operator yet to be defined5. The noises wi(t) are real Gaussian random
processes defined on a probability space (�,F, Q) whose mean and correlation functions are,
respectively,

EQ[wi(t)] = 0, EQ[wi(t1)wj (t2)] = Dij (t1, t2). (7)

When ξR �= 0, which is the case for collapse models, equation (6) does not preserve the norm
of the wavefunction; therefore, we introduce the normalized vector:

|ψ(t)〉 = |φ(t)〉
‖|φ(t)〉‖ , (8)

(assuming of course that the norm of |φ(t)〉 does not vanish) which we take as the physical
vector describing the random state of the system at time t.

The measure Q previously introduced is not the correct physical probability since it does
not lead to a collapse that respects the Born probability rule; the right physical probability,
which we shall call P, is defined as follows:

P[F ] = EQ[1F 〈φ(t)|φ(t)〉] ∀F ∈ F, (9)

5 As we shall see, the operator O will not be a standard linear operator, since it will act on a vector also through its
dependence on the noises wi(t), by means of functional derivatives. In this respect, our approach differs from the
standard one based on Itô’s diffusion equations in Hilbert spaces.
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where 1F is the indicator function associated with the measurable subset F of �. This definition
corresponds to the assumption of the GRW model, according to which a collapse (in space) is
more likely to occur where the wavefunction is larger, as postulated by the Born probability
rule.

To summarize, an initial state |ψ(0)〉 is driven by the stochastic dynamics into an ensemble
of states |ψ(t)〉 of the form (8), where |φ(t)〉 solves equation (6); the distribution of states
within the ensemble is given by the probability P defined in (9).

Note that the definition (9) of P not only matches with the Born probability rule, but is
also necessary in order to prevent the possibility of using the collapse mechanism to send
information at a speed faster than the speed of light. As shown in [18], when the dynamics of
a statistical operator ρ(t) is nonlinear, it is in general possible to send faster-than-light signals
which can be used by two spacelike separated observers to communicate with each other; this
possibility is instead forbidden when the evolution is linear. In our case, according to the
previous assumptions, ρ(t) is defined as follows:

ρ(t) = EP[|ψ(t)〉〈ψ(t)|]; (10)

but according to equations (8) and (9) we have the mathematical equality:

EP[|ψ(t)〉〈ψ(t)|] = EQ[|φ(t)〉〈φ(t)|], (11)

and since |φ(t)〉 solves the linear equation (6), it follows that the operator which maps ρ(t) to
ρ(t + dt) is linear, thus not allowing faster-than-light signaling of the type just discussed.

We still need to prove that equation (9) correctly defines a probability measure; it
is easy to check that all properties are satisfied expect for the normalization condition
P[�] = EQ[〈φt |φt 〉] = 1, which in general is not fulfilled unless the operator O takes a
particular form. In fact, by using the Furutsu–Novikov formula [19]:

EQ[F [{w(t)}]wi(t)] =
N∑

j=1

∫ t

0
dsDij (t, s)EQ

[
δF [{w(t)}]

δwj (s)

]
(12)

which holds for a generic functional F [{w(t)}] of the Gaussian noises wi(t), i = 1, . . . N

satisfying (7), and computed from initial time 0 to time t, one can immediately prove that

d

dt
EQ[〈φt |φt 〉] = 0 if O = −2

√
γ ξR

N∑
i,j=1

Ai

∫ t

0
ds Dij (t, s)

δ

δwj (s)
. (13)

Accordingly, the linear equation which, together with equation (9), induces collapse of the
wavefunction with the correct quantum probabilities and, at the same time, does not allow one
to use the collapse process to send signals at faster-than-light speed, is [14]

d|φ(t)〉
dt

=
⎡
⎣− i

h̄
H +

√
γ ξ

N∑
i=1

Aiwi(t) − 2
√

γ ξR

N∑
i,j=1

Ai

∫ t

0
ds Dij (t, s)

δ

δwj (s)

⎤
⎦ |φ(t)〉.

(14)

As foreseen, this equation is non-Markovian and for this reason is highly non-trivial, since
the future evolution, which involves the whole past, depends on the combined effect of the
standard Hamiltonian H and the collapsing operators Ai . This dynamics is not easy to unfold
if these operators do not commute among themselves, as is usually the case.

The equation for the normalized vector |ψ(t)〉 does not have a closed form, unless the
functional derivative of |φ(t)〉 can be explicitly computed; as we shall se in the next sections,
this happens when the Hamiltonian H is neglected (or when it commutes with the operators Ai),
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and when one writes the evolution as a perturbation expansion with respect to the relevant
parameters.

Before moving on, we make a few comments about the change of measure as defined in
(9). In the white-noise case one can prove, under suitable hypotheses on the operators H and
Ai (see e.g. [20]), that 〈φ(t)|φ(t)〉 is martingale with Q-mean equal to 1; this ensures that one
can consistently use 〈φ(t)|φ(t)〉 as a Radon–Nikodym derivative of a new probability measure
P with respect to Q, as we have assumed more heuristically in the previous paragraphs.
Here we will not attempt to prove that 〈φ(t)|φ(t)〉 satisfies the required properties also in the
more general case of non-white Gaussian processes, leaving the analysis of the conditions
under which this is true to future research. Secondly, Girsanov’s theorem provides, in the
white-noise case, a connection between Wiener processes with respect to the measure Q

and Wiener processes with respect to the transformed measure P. It would be interesting to
see whether a similar theorem can be proved also in the non-white-noise case, and whether
Q-Gaussian processes can be connected to P-Gaussian processes; we will come back on this
point in section 4.

2.1. Collapse of the state vector

We now show that, when the standard quantum Hamiltonian H is set to 0, the dynamics
induces the collapse of the state vector |ψ(t)〉 to one of the common eigenstates of the
operators Ai . As shown in [14], if H is neglected so that all operators entering the equation
commute among themselves, then the functional derivative can be explicitly computed and
equation (14) reduces to

d|φ(t)〉
dt

=
⎡
⎣√

γ ξ

N∑
i=1

Aiwi(t) − 2γ ξξR

N∑
i,j=1

AiAjFij (t)

⎤
⎦ |φ(t)〉, (15)

where we have defined

Fij (t) =
∫ t

0
dsDij (t, s). (16)

That equation (15) is equivalent to equation (14) in the limit H = 0 can easily be seen by
integration of equation (15), which is trivial since all operators commute, from which one
obtains the relation:

δ

δwj (s)
|φ(t)〉 = √

γ ξAj |φ(t)〉, s � t, (17)

a relation which will often be used in the following calculations.
The equation for the normalized vector |ψ(t)〉 can now be directly computed from the

definition (8):

d|ψ(t)〉
dt

=
⎡
⎣√

γ

N∑
i=1

(ξAi − ξR〈Ai〉t )wi(t) − 2γ ξR

N∑
i,j=1

(ξAiAj − ξR〈AiAj 〉t )Fij (t)

⎤
⎦|ψ(t)〉,

(18)

with the expectations 〈· · ·〉t computed in the state |ψ(t)〉, that is 〈O〉t ≡ 〈ψ(t)|O|ψ(t)〉.
The equation for the statistical operator ρ(t) can now be computed either from

equation (18) through the definition of equation (10) or from equation (15) through the
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equivalence of equation (11); in both cases one gets

d

dt
ρ(t) = γ |ξ |2

N∑
i,j=1

(Aiρ(t)Aj + Ajρ(t)Ai − AiAjρ(t) − ρ(t)AjAi)Fij (t), (19)

which correctly reduces to (4) in the white-noise limit6.
We have now all the necessary formulas to compute the time evolution of quantities

such as EP[〈An〉t ] and EP

[〈A〉nt
]
, where A is a self-adjoint operator commuting with all the

operators Ai . Because of the relation EP[〈An〉t ] = Tr[Anρ(t)], which is a consequence of
equation (10), and because of the trace-preserving structure of equation (19), one immediately
has

d

dt
EP[〈An〉t ] = 0. (20)

By using the change of measure (9) and through a direct calculation, one finds for EP

[〈A〉nt
]

instead that
d

dt
EP

[〈A〉nt
] = 2

√
γ ξREP

[〈A〉n−1
t (n〈AX〉t − (n − 1)〈A〉t 〈X〉t )

]
,

X =
N∑

i=1

Aiwi(t) − 2
√

γ ξR

N∑
i,j=1

AiAjFij (t).

(21)

The terms proportional to wi(t) can be rewritten by using the Furutsu–Novikov formula,
together with the equality:

δ〈O〉t
δwj (s)

= √
γ [ξ�〈AjO〉t + ξ 〈OAj 〉t − 2ξR〈O〉t 〈Aj 〉t ], (22)

which is valid for any operator O, and which can be directly proved from the definition
〈O〉t ≡ 〈φ(t)|O|φ(t)〉/〈φ(t)|φ(t)〉, together with equation (17). After a rather lengthy
calculation, one can prove that equation (21) simplifies to

d

dt
EP

[〈A〉nt
] = 4n(n − 1)γ ξ 2

R

∑
i.j

EP

[〈A〉n−2
t 〈(Ai − 〈Ai〉t )A〉t 〈(Aj − 〈Aj 〉t )A〉t

]
Fij (t). (23)

We now apply equations (20) and (23) to compute the time evolution of the variance
VA(t) = 〈A2〉t − 〈A〉2

t of the operator A; we obtain

EP[VA(t)] = VA(0) − 8ξ 2
Rγ

∑
i.j

∫ t

0
ds EP[〈(Ai − 〈Ai〉s)A〉s〈(Aj − 〈Aj 〉s)A〉s]Fij (s). (24)

Now, the same argument used in equation (2) to prove the reduction of equation (1) holds true:
when the matrix Fij (s) is positive definite in the limit as t → ∞, equation (24) is consistent
if only if, for large times, 〈(Ai − 〈Ai〉t )A〉t goes to zero for any i almost surely (a.s.) (i.e.,
except on a subset of � of realizations of the noise of P-measure 0); in particular, if we take
A equal to any one of the operators Ai we have

lim
t→∞

[〈
A2

i

〉
t
− 〈Ai〉2

t

] = lim
t→∞ VAi

(t) = 0 a.s. ∀ i, (25)

6 Note that in the white-noise limit, through equation (16) one encounters the integral of a delta function at the
endpoint of an interval, which is

∫ t

0 dsδ(t − s) = 1/2, since δ(t) = δ(−t) and
∫ ∞
−∞ dtδ(t) = 1. This enters both

in comparing the white-noise limit of equation (19) to equation (4), and the white-noise limit of equation (18) to
equation (5).
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which is the desired result. Moreover, due to equation (20), the average value of 〈Pai
〉t remains

constant in time, with Pai
the projector on any eigenspace of Ai with eigenvalue ai , which

means that the collapse occurs with the correct quantum probabilities.

2.2. Perturbation expansion to order γ

The approximation used in the previous subsection, which consisted in neglecting the quantum
Hamiltonian H, is useful when the system under study is macroscopic, since in this case the
effect of the collapsing terms is typically much stronger than that of H: this is precisely the
reason why collapse models ensure the localization of the wavefunction at the macroscopic
level. For microscopic systems, on the other hand, such an approximation is no longer valid;
just the reverse from the macroscopic case, at the microscopic level the effect of the collapsing
terms represents typically only a small perturbation on the standard quantum evolution: for
this reason collapse models agree very well with standard quantum-mechanical predictions.
It then becomes meaningful, for micro-systems, to perform a perturbation expansion of the
evolution of the state vector with respect to the parameter

√
γ , in order to compute the leading

terms representing the deviations of the predictions of collapse models from those given by
standard quantum mechanics. To this end, let us introduce the interaction picture operators
and states:

Ai(t) = U †(t)AiU(t), |φI(t)〉 = U †(t)|φ(t)〉, U(t) = exp

(
− i

h̄
H t

)
; (26)

equation (14) then becomes

d|φI(t)〉
dt

=
⎡
⎣√

γ ξ

N∑
i=1

Ai(t)wi(t) − 2
√

γ ξR

N∑
i,j=1

Ai(t)

∫ t

0
dsDij (t, s)

δ

δwj (s)

⎤
⎦ |φI(t)〉. (27)

The perturbation expansion of |φI(t)〉 with respect to the parameter
√

γ reads

|φI(t)〉 = ∣∣φI
0(t)

〉
+

√
γ
∣∣φI

1(t)
〉
+ γ

∣∣φI
2(t)

〉
+ · · · , (28)

while the functional derivative acts on |φI(t)〉 as follows:

δ

δwj (s)
|φI(t)〉 = √

γ
δ

δwj (s)

∣∣φI
1(t)

〉
+ γ

δ

δwj (s)

∣∣φI
2(t)

〉
+ · · · ; (29)

the second term must be of order γ , since the functional derivative brings down a term
proportional to

√
γ ; for the same reason, the third term is of order γ 3/2. This means that the

perturbation expansion can be explicitly carried out, despite the functional derivative appearing
in equation (27), and we get the following results to order γ :

order 0 :
d

dt

∣∣φI
0(t)

〉 = 0, (30)

order
√

γ :
d

dt

∣∣φI
1(t)

〉 = ξ

N∑
i=1

Ai(t)wi(t)
∣∣φI

0

〉
, (31)

order γ :
d

dt

∣∣φI
2(t)

〉 = ξ

N∑
i=1

Ai(t)wi(t)
∣∣φI

1(t)
〉 − 2ξRξ

N∑
i,j=1

∫ t

0
ds Ai(t)Aj (s)Dij (t, s)

∣∣φI
0

〉
.

(32)
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Going back to the Schrödinger picture, equation (14), to order γ , reduces to

d

dt
|φ(t)〉 = − i

h̄
H |φ(t)〉 +

[
√

γ ξ

N∑
i=1

Aiwi(t)

+ γ ξ

N∑
i,j=1

∫ t

0
ds AiAj (s−t)(ξwi(t)wj (s) − 2ξRDij (t, s))

]
|φ0(t)〉, (33)

with |φ(t)〉 the total wavefunction, and |φ0(t)〉 its zeroth-order part. By use of equations (30)–
(32), this can also be written entirely in terms of |φ(t)〉 as

d

dt
|φ(t)〉 =

⎡
⎣− i

h̄
H +

√
γ ξ

N∑
i=1

Aiwi(t) − 2γ ξξR

N∑
i,j=1

∫ t

0
ds AiAj (s − t)Dij (t, s)

⎤
⎦ |φ(t)〉.

(34)

We can now see more clearly the non-Markovian nature of the evolution, because of the
presence of the term Aj(s − t), which depends on the past effect of H on Aj . When H = 0,
one immediately sees that by using equation (16), the |φ(t)〉 evolution equation of equation (34)
reduces to the evolution equation given in equation (15).

The corresponding equation for the normalized vector |ψ(t)〉 defined by equation (8) can
now be obtained by a straightforward application of the chain rule for differentiation, with the
result

d

dt
|ψ(t)〉 =

[
− i

h̄
(H + ih̄γOASA)

+
√

γ

N∑
i=1

(ξAi − ξR〈Ai〉t )wi(t) + γ (OSA − 〈OSA〉t )
]
|ψ(t)〉, (35)

again with the expectations 〈· · ·〉t computed in the state |ψ(t)〉. Here OASA and OSA are
respectively the anti-self-adjoint and self-adjoint parts of the operator O defined by the final
term inside the square brackets of equation (34), and are given explicitly by

OASA = −
N∑

i,j=1

∫ t

0
ds

(
ξ 2

R[Ai,Aj (s − t)] + iξIξR{Ai,Aj (s − t)})Dij (t, s) (36)

OSA = −
N∑

i,j=1

∫ t

0
ds

(
ξ 2

R{Ai,Aj (s − t)} + iξIξR[Ai,Aj (s − t)]
)
Dij (t, s). (37)

The equation for the statistical operator can now be computed by resorting to relations
(10) and (11). The calculation proceeds most directly from the |φ(t)〉 evolution equation given
in equation (33), since in this equation all dependence on the noise is explicit. To the order
to which we are working, we can replace the γ term in this equation by its expectation EQ,
giving the simplified evolution equation:

d

dt
|φ(t)〉 = − i

h̄
H |φ(t)〉 +

[
√

γ ξ

N∑
i=1

Aiwi(t)

− γ |ξ |2
N∑

i,j=1

∫ t

0
ds AiAj (s − t)Dij (t, s)

]
|φ0(t)〉. (38)
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It is then straightforward to compute EQ[|φ(t)〉〈φ(t)|], with the result7

d

dt
ρ(t) = − i

h̄
[H, ρ(t)] + |ξ |2γ

N∑
i,j=1

∫ t

0
dsDij (t, s)[Aiρ(t)Aj (s − t) + Aj(s − t)ρ(t)Ai

−AiAj (s − t)ρ(t) − ρ(t)Aj (s − t)Ai]. (39)

As we can see, the above equation, which is correct to order γ , depends only on the absolute
value of ξ ; this means that all physical predictions are, at least to order γ , independent of
the phase of ξ , precisely as in the white-noise case. As a consequence, in order to compute
physical predictions, one can resort to equation (14) with ξ = i, which is much simpler since
the integro-differential term vanishes, and one is left with a standard Schrödinger equation
with a random Hermitian potential.

3. An alternative construction of the nonlinear collapse equation

We give in this section an alternative construction of the nonlinear collapse equation in the
case of non-white Gaussian noise. Instead of starting from a linear equation and using a
change of measure, we work throughout with a norm-preserving nonlinear equation, and use
perturbation theory to determine the structure of the order γ term which guarantees that the
corresponding density matrix evolution will have the Lindblad form [21] in the Markovian
limit.

Thus, returning to equation (6), we now start from

d|ψ(t)〉
dt

=
[
− i

h̄
H +

√
γ

N∑
i=1

(ξAi − ξR〈Ai〉t )wi(t) + γ (BSA − 〈BSA〉t ) + γBASA

]
|ψ(t)〉,

(40)

with BSA and BASA respectively a self-adjoint operator and an anti-self-adjoint operator to be
determined, and with wi(t) now a non-white Gaussian noise obeying

ER[wi(t)] = 0, ER[wi(t1)wj (t2)] = Dij (t1, t2) (41)

with respect to the measure R. We shall determine BSA and BASA to simplify the evolution
equation for ρ(t) = ER[ρ̂(t)] = ER[|ψ(t)〉〈ψ(t)|], in such a way that in the Markovian limit
it reduces to a Lindblad evolution in the first standard form,

dρ(t)

dt
= Lρ(t)

= − i

h̄
[H, ρ(t)] +

∑
i,j

aij

(
Fiρ(t)Fj − 1

2

{
F

†
j Fi, ρ(t)

})
, (42)

with Fi suitable functions of {Ai}, and with the coefficients aij determined by the noise
expectation Dij .

By construction, equation (40) preserves the normalization of the state vector |ψ(t)〉 under
time evolution. From this equation, and its adjoint, one easily finds that the pure state density

7 P Pearle has pointed out that, in the real-noise (ξ = 1) case, this equation follows from differentiation of the
integrated expression given in equation (4.11) of his Physical Review article cited in [12], which he suggests is exact
when time-ordering is included.
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matrix ρ̂(t) obeys the evolution equation:

dρ̂(t)

dt
= − i

h̄
[H, ρ̂(t)] +

[
√

γ iξI

N∑
i=1

Aiwi(t) + γBASA, ρ̂(t)

]

+

{
√

γ ξR

N∑
i=1

(Ai − 〈Ai〉t )wi(t) + γ (BSA − 〈BSA〉t ), ρ̂(t)

}
. (43)

Taking the expectation of this, and retaining terms through order γ but dropping terms of order
γ 3/2, we get

dρ(t)

dt
= − i

h̄
[H, ρ(t)] +

√
γ iξI

N∑
i=1

[Ai, ER[ρ̂(t)wi(t)]]

+ γ [BASA, ρ(t)] +
√

γ ξR

N∑
i=1

{Ai, ER[ρ̂(t)wi(t)]}

− 2
√

γ ξR

N∑
i=1

ER[ρ̂(t)〈Ai〉twi(t)] + γ {BSA − 〈BSA〉t , ρ(t)}. (44)

We now use the Furutsu–Novikov formula

ER[F [{w(t)}]wi(t)] =
N∑

j=1

∫ t

0
dsDij (t, s)ER

[
δF [{w(t)}]

δwj (s)

]
, (45)

first with F = ρ̂(t), and then with F = 〈Ai〉t ρ̂(t) = ρ̂(t)Tr ρ̂(t)Ai . By the chain rule,

δρ̂(t)Tr ρ̂(t)Ai

δwj (s)
= δρ̂(t)

δwj (s)
Tr ρ̂(t)Ai + ρ̂(t)Tr

δρ̂(t)

δwj (s)
Ai, (46)

so for both choices of F in equation (45) what we need is δρ̂(t)/δwj (s), calculated through
terms of order

√
γ . This can be calculated directly by integrating the differential equation of

equation (40). In terms of the interaction picture operators

Aj(s − t) = e
i
h̄
H (s−t)Aj e− i

h̄
H (s−t), (47)

a simple calculation gives

δρ̂(t)

δwj (s)
= √

γ [iξI[Aj(s − t), ρ̂(t)] + ξR{Aj(s − t) − 〈Aj 〉s , ρ̂(t)}]. (48)

Substituting this into equation (44) gives a lengthy expression, which on algebraic
simplification, and noting that 〈Aj(s − t)〉t = 〈Aj 〉s , gives a result that may be summarized
as follows. Let us abbreviate

Sij ≡
N∑

i,j=1

∫ t

0
dsDij (t, s), (49)

so that Sij acting on a function of t, s gives a function only of t. Then we find

dρ(t)

dt
= − i

h̄
[H, ρ(t)] + γ

(
ξ 2

R + ξ 2
I

)
Sij [Aiρ(t)Aj (s − t)

+ Aj(s − t)ρ(t)Ai − AiAj (s − t)ρ(t) − ρ(t)Aj (s − t)Ai]

+ γ
[
Sij

(
ξ 2

RFij + iξIξRCij

)
+ BASA, ρ(t)

]
+ γ

{
Sij

[
ξ 2

R(Cij − 〈Cij 〉t ) + iξIξR(Fij − 〈Fij 〉t )
]

+ BSA − 〈BSA〉t , ρ(t)
}
, (50)
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where we have introduced the condensed notations
Fij = [Ai,Aj (s − t)],

Cij = {Ai,Aj (s − t)} − 2Ai〈Aj(s − t)〉t − 2〈Ai〉tAj (s − t).
(51)

Let us now make the following choice of the previously undetermined operators BSA and
BASA,

BSA = −Sij

(
ξ 2

RCij + iξIξRFij

)
, BASA = −Sij

(
ξ 2

RFij + iξIξRCij

)
. (52)

Then the final two lines of equation (50) cancel to zero, and we are left with

dρ(t)

dt
= − i

h̄
[H, ρ(t)] + γ

(
ξ 2

R + ξ 2
I

) N∑
i,j=1

∫ t

0
dsDij (t, s)[Aiρ(t)Aj (s − t)

+ Aj(s − t)ρ(t)Ai − AiAj (s − t)ρ(t) − ρ(t)Aj (s − t)Ai]. (53)

Thus, we recover from this approach the evolution of equation (39) of section 2. In the
Markovian limit in which Dij (s, t) decays rapidly when s is not close to t, we can approximate
s−t � 0 in equation (53). We then have Aj(s−t) � Aj , which by assumption commutes with
Ai , and the evolution of equation (53) takes the first standard form of a Lindblad evolution,

dρ(t)

dt
= − i

h̄
[H, ρ(t)] + γ

(
ξ 2

R + ξ 2
I

) N∑
i,j=1

∫ t

0
dsDij (t, s)

× [Aiρ(t)Aj + Ajρ(t)Ai − {AiAj , ρ(t)}]. (54)

Equation (54) also follows, without the Markovian approximation, if one neglects the
Hamiltonian H, since then the interaction and Schrödinger pictures coincide, and one has
exactly Aj(s − t) = Aj .

4. Change of measure and other concluding remarks

4.1. Change of measure

In sections 2 and 3, we have given two different derivations of the time evolution equation
for the normalized wavefunction |ψ(t)〉, and of the corresponding evolution equation for the
density matrix ρ(t). By construction, the density matrix evolutions of equations (39) and
(53) are the same. However, a comparison of the operators OSA and OASA of section 2 with
the operators BSA and BASA of section 3 shows that these are not the same, and hence the
corresponding evolution equations for |ψ(t)〉 of equations (35) and (40) are not the same.
This means that our two constructions correspond to inequivalent unravelings of the same
density matrix evolution: in general the noises, expectations and wavefunctions |ψ(t)〉 of
sections 2 and 3 are not the same, even though they lead to the same evolution equation for
the noise-averaged density matrix.

However, in certain special cases the formulations of sections 2 and 3 are related by a
time-dependent shift in the mean values of the Gaussian noise variables. In order for the
functions |ψ(t)〉 used in the two derivations to be identical, they must obey the same time
evolution equation. Changing notation, by denoting the noise of section 3 as w̃i(t), we find
that the evolution equations for |ψ(t)〉 of equation (35) and equation (40) become identical
when the noises w̃i(t) and wi(t) are related to leading order in

√
γ by

N∑
i=1

w̃i(t)Ai =
N∑

i=1

wi(t)Ai − 2
√

γ ξR

N∑
i,j=1

∫ t

0
dsDij (t, s)[Ai〈Aj(s − t)〉t + 〈Ai〉tAj (s − t)],

(55)
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with

ER[w̃i(t)w̃j (s)] = EQ[wi(t)wj (s)] = Dij (t, s) (56)

to zeroth order in
√

γ .
Equation (55) is consistent only if the operators Aj(s − t) can be expanded over a basis

of the time zero operators Ai , with c-number coefficients, that is

Aj(s − t) =
N∑

i=1

Kji(s − t)Ai. (57)

This is automatically true (i) when the Hamiltonian H vanishes, since then Aj(s − t) is
time independent, and (ii) in the white-noise limit, since then Dij (t, s) ∝ δ(t − s), and so
equation (55) only involves Aj(0) = Aj . It is approximately true (iii) whenever a Markovian
approximation to the time evolution is valid. In general, however, equation (55) involves on
the right-hand side operators Aj(s − t) that are linearly independent of the operators Ai , and
so cannot be satisfied.

When equation (57) holds, then equation (55) simplifies to take the form

N∑
i=1

w̃i(t)Ai =
N∑

i=1

wi(t)Ai −
N∑

i=1

Ki(t)Ai, (58)

with Ki(t) given by

Ki(t) = 2
√

γ ξR

N∑
j=1

∫ t

0
ds

[
Dij (t, s)〈Aj(s − t)〉t +

N∑
m=1

Djm(s − t)〈Aj 〉tKmi(s − t)

]
. (59)

Equation (58) can clearly be satisfied by making a c-number shift in the noise variable for
each i,

w̃i(t) = wi(t) − Ki(t) (60)

The relation at time t between the measure R of section 3, in which w̃i(t) has zero mean, and
the measure Q of section 2, in which wi(t) has zero mean, is then to first order in

√
γ , for any

argument O,

ER[O] = EQ[W(t)O]. (61)

Here the weighting factor W(t) is given by

W(t) = 1 +
N∑

i=1

∫ t

0
ds Ci(t, s)wi(s), (62)

where Ci(t, s) obeys the integral equation

Ki(t) =
N∑

j=1

∫ t

0
dsDij (t, s)Cj (t, s). (63)

This choice of Ci(t, s) guarantees that when O is taken as w̃i in equation (61), one finds that
ER[w̃i] = 0, as needed. An analogous c-number shift of the noise variable enters in comparing
equation (5) of section 1 with the white-noise limit of equation (18) in section 2.1.
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4.2. Final remarks

In the preceding sections, we have shown that the white-noise formalism is robust under a
generalization to the physically more realistic assumption of non-white noise. Both the proof
of state vector reduction, and the ‘imaginary time’ trick for calculating physical effects of the
noise, carry over to the non-white-noise case, to leading quadratic order in the noise strength.

We wish here to elaborate on some implications of our calculations for models of the non-
white noise. We recall that the noise autocorrelation Dij (t1, t2) is defined as the expectation
EQ[wi(t1)wj (t2)], and that the condition for state vector reduction is that the time integral

Fij (t) =
∫ t

0
dsDij (t, s) (64)

should be a positive definite matrix in the limit as t → ∞.8 Let us now assume time translation
invariance, which implies that Dij (t, s) = Dij (t − s), and investigate what the requirement
for state vector reduction means in terms of the spectral decomposition of Dij . Writing

Dij (t − s) =
∫ ∞

0
dω γij (ω) cos ω(t − s) (65)

we have

Fij (t) =
∫ ∞

0
dω γij (ω)

sin ωt

ω
=

∫ ∞

0

du

u
sin uγij (u/t). (66)

Thus, assuming that γ (ω) is smooth in the neighborhood of ω = 0, we find

lim
t→∞ Fij (t) = γij (0)

∫ ∞

0

du

u
sin u = γij (0)π. (67)

Hence, the reduction requirement is satisfied when γij (0) is a positive definite matrix in i, j . In
particular, the spectral weight γij (ω) can have a cutoff at a finite upper limit ω = ωmax, without
in any way affecting the reduction argument. The possibility of such an upper cutoff has been
discussed in the review of Bassi and Ghirardi [1], and as noted by Adler and Ramazanoglu
[22], is suggested on physical grounds by existing upper limits on noise-induced gamma-ray
emission.

Let us next consider the rate of secular energy increase induced by the noise, taking
advantage of the ‘imaginary-noise’ trick to write the noise term as an addition to the
Hamiltonian. We consider the simple model describing a particle of mass m moving in
one dimension, with a non-white-noise coupling to its coordinate x, with Hamiltonian

H = p2

2m
− Cwtx. (68)

Because the noise term does not commute with p, the kinetic energy p2/(2m) increases over
time. We have for the expected rate of energy gain,

d

dt
E

[
p2

2m

]
= m−1E

[
p

dp

dt

]
. (69)

From the Heisenberg equations of motion implied by equation (68) we find dx/dt =
p, dp/dt = Cwt , and so

p(t) = p(0) + C

∫ t

0
duwu. (70)

8 More generally, as can be seen from equation (24), the reduction requirement is satisfied when
∫ t

0 ds Fij (s) → ∞
as t → ∞.
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Hence the rate of energy gain is

d

dt
E

[
p2

2m

]
= C2

m

∫ t

0
du E [wtwu] = C2

m

∫ t

0
duD(t, u) = C2

m
F(t), (71)

and therefore is governed by the same integral over the autocorrelation function as the reduction
rate. Thus, when the reduction condition limt→∞ F(t) > 0 is obeyed, the rate of noise-induced
energy production is nonzero at large times, a result which readily generalizes to more realistic
reduction models. As reviewed in [3], this leads to various upper bounds on the noise strength.
This conclusion can be evaded in the generic case of multiple operators Ai , if the only
nonvanishing eigenvalue of Fij (t) as t → ∞ is the one associated with the total energy. An
interesting model where this case is realized, but in which localizing reduction still occurs
in an approximate sense, is given by taking Dij (t, s) to be a correlation function associated
with thermal noise, as might be expected if state vector reduction is induced by some type
of cosmological relic field. A detailed examination of the thermal noise model will be given
elsewhere [23].
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Diósi L 1990 Phys. Rev. A 42 5086
Gatarek D and Gisin N 1991 J. Math. Phys. 32 2152
Bassi A 2005 J. Phys. A: Math. Gen. 38 3173

[5] Bassi A, Ippoliti E and Vacchini B 2005 J. Phys. A: Math. Gen. 38 8017
Halliwell J J and Zoupas A 1995 Phys. Rev. D 52 7294

[6] Ghirardi G C, Pearle P and Rimini A 1990 Phys. Rev. A 42 78
[7] Adler S L and Brun T A 2001 J. Phys. A: Math. Gen. 34 4797

Adler S L, Brody D C, Brun T A and Hughston L P 2001 J. Phys. A: Math. Gen. 34 8795
Brody D C and Hughston L P 2002 J. Math. Phys. 43 5254
Brody D C and Hughston L P 2006 J. Phys. A: Math. Gen. 39 833

[8] Penrose R 1996 Gen. Rel. Grav. 28 581
Penrose R 1998 Phil. Trans. R. Soc. A 356 1927
Penrose R et al 2000 Mathematical Physics ed A Fokas (London: Imperial College)

http://dx.doi.org/10.1016/S0370-1573(03)00103-0
http://dx.doi.org/10.1103/PhysRevD.34.470
http://dx.doi.org/10.1103/PhysRevA.39.2277
http://dx.doi.org/10.1007/BF02054655
http://dx.doi.org/10.1088/1751-8113/40/12/S03
http://dx.doi.org/10.1016/0375-9601(88)90555-5
http://dx.doi.org/10.1088/0305-4470/21/13/013
http://dx.doi.org/10.1103/PhysRevA.42.5086
http://dx.doi.org/10.1063/1.529188
http://dx.doi.org/10.1088/0305-4470/38/14/008
http://dx.doi.org/10.1088/0305-4470/38/37/007
http://dx.doi.org/10.1103/PhysRevD.52.7294
http://dx.doi.org/10.1103/PhysRevA.42.78
http://dx.doi.org/10.1088/0305-4470/34/23/302
http://dx.doi.org/10.1088/0305-4470/34/42/306
http://dx.doi.org/10.1063/1.1512975
http://dx.doi.org/10.1088/0305-4470/39/4/008
http://dx.doi.org/10.1007/BF02105068
http://dx.doi.org/10.1098/rsta.1998.0256


15098 S L Adler and A Bassi
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